
Logo of the Unicode

Consortium.

From Wikipedia, the free encyclopedia

Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's writing
systems. Developed in conjunction with the Universal Coded Character Set
(UCS) standard and published as The Unicode Standard, the latest version of
Unicode contains a repertoire of more than 128,000 characters covering 135
modern and historic scripts, as well as multiple symbol sets. The standard
consists of a set of code charts for visual reference, an encoding method and
set of standard character encodings, a set of reference data files, and a number
of related items, such as character properties, rules for normalization,
decomposition, collation, rendering, and bidirectional display order (for the
correct display of text containing both right-to-left scripts, such as Arabic and
Hebrew, and left-to-right scripts).[1] As of June 2016, the most recent version
is Unicode 9.0. The standard is maintained by the Unicode Consortium.

Unicode's success at unifying character sets has led to its widespread and predominant use in the
internationalization and localization of computer software. The standard has been implemented in many recent
technologies, including modern operating systems, XML, Java (and other programming languages), and the
.NET Framework.

Unicode can be implemented by different character encodings. The most commonly used encodings are
UTF-8, UTF-16 and the now-obsolete UCS-2. UTF-8 uses one byte for any ASCII character, all of which have
the same code values in both UTF-8 and ASCII encoding, and up to four bytes for other characters. UCS-2
uses a 16-bit code unit (two 8-bit bytes) for each character but cannot encode every character in the current
Unicode standard. UTF-16 extends UCS-2, using one 16-bit unit for the characters that were representable in
UCS-2 and two 16-bit units (4 × 8 bits) to handle each of the additional characters.

1 Origin and development
1.1 History
1.2 Architecture and terminology

1.2.1 Code point planes and blocks
1.2.2 Character General Category
1.2.3 Abstract characters

1.3 Unicode Consortium
1.4 Versions
1.5 Scripts covered

2 Mapping and encodings
2.1 Unicode Transformation Format and Universal Coded Character Set
2.2 Ready-made versus composite characters
2.3 Ligatures
2.4 Standardized subsets

3 Adoption

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

1 of 25 1/3/2017 10:14 AM



3.1 Operating systems
3.2 Input methods
3.3 Email
3.4 Web
3.5 Fonts
3.6 Newlines

4 Issues
4.1 Philosophical and completeness criticisms
4.2 Mapping to legacy character sets
4.3 Indic scripts
4.4 Combining characters

5 See also
6 References
7 Further reading
8 External links

Unicode has the explicit aim of transcending the limitations of traditional character encodings, such as those
defined by the ISO 8859 standard, which find wide usage in various countries of the world but remain largely
incompatible with each other. Many traditional character encodings share a common problem in that they allow
bilingual computer processing (usually using Latin characters and the local script), but not multilingual
computer processing (computer processing of arbitrary scripts mixed with each other).

Unicode, in intent, encodes the underlying characters—graphemes and grapheme-like units—rather than the
variant glyphs (renderings) for such characters. In the case of Chinese characters, this sometimes leads to
controversies over distinguishing the underlying character from its variant glyphs (see Han unification).

In text processing, Unicode takes the role of providing a unique code point—a number, not a glyph—for each
character. In other words, Unicode represents a character in an abstract way and leaves the visual rendering
(size, shape, font, or style) to other software, such as a web browser or word processor. This simple aim
becomes complicated, however, because of concessions made by Unicode's designers in the hope of
encouraging a more rapid adoption of Unicode.

The first 256 code points were made identical to the content of ISO-8859-1 so as to make it trivial to convert
existing western text. Many essentially identical characters were encoded multiple times at different code
points to preserve distinctions used by legacy encodings and therefore, allow conversion from those encodings
to Unicode (and back) without losing any information. For example, the "fullwidth forms" section of code
points encompasses a full Latin alphabet that is separate from the main Latin alphabet section because in
Chinese, Japanese, and Korean (CJK) fonts, these Latin characters are rendered at the same width as CJK
ideographs, rather than at half the width. For other examples, see duplicate characters in Unicode.

History

Based on experiences with the Xerox Character Code Standard (XCCS) since 1980,[2] the origins of Unicode
date to 1987, when Joe Becker from Xerox and Lee Collins and Mark Davis from Apple started investigating
the practicalities of creating a universal character set.[3] With additional input from Peter Fenwick and Dave

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

2 of 25 1/3/2017 10:14 AM



Opstad,[2] Joe Becker published a draft proposal for an "international/multilingual text character encoding
system in August 1988, tentatively called Unicode". He explained that "[t]he name 'Unicode' is intended to
suggest a unique, unified, universal encoding".[2]

In this document, entitled Unicode 88, Becker outlined a 16-bit character model:[2]

Unicode is intended to address the need for a workable, reliable world text encoding. Unicode
could be roughly described as "wide-body ASCII" that has been stretched to 16 bits to encompass
the characters of all the world's living languages. In a properly engineered design, 16 bits per
character are more than sufficient for this purpose.

His original 16-bit design was based on the assumption that only those scripts and characters in modern use
would need to be encoded:[2]

Unicode gives higher priority to ensuring utility for the future than to preserving past antiquities.
Unicode aims in the first instance at the characters published in modern text (e.g. in the union of
all newspapers and magazines printed in the world in 1988), whose number is undoubtedly far
below 214 = 16,384. Beyond those modern-use characters, all others may be defined to be obsolete
or rare; these are better candidates for private-use registration than for congesting the public list of
generally useful Unicodes.

In early 1989, the Unicode working group expanded to include Ken Whistler and Mike Kernaghan of
Metaphor, Karen Smith-Yoshimura and Joan Aliprand of RLG, and Glenn Wright of Sun Microsystems, and in
1990 Michel Suignard and Asmus Freytag from Microsoft and Rick McGowan of NeXT joined the group. By
the end of 1990, most of the work on mapping existing character encoding standards had been completed, and
a final review draft of Unicode was ready.

The Unicode Consortium was incorporated in California on January 3, 1991, and in October 1991, the first
volume of the Unicode standard was published. The second volume, covering Han ideographs, was published
in June 1992.

In 1996, a surrogate character mechanism was implemented in Unicode 2.0, so that Unicode was no longer
restricted to 16 bits. This increased the Unicode codespace to over a million code points, which allowed for the
encoding of many historic scripts (e.g., Egyptian Hieroglyphs) and thousands of rarely used or obsolete
characters that had not been anticipated as needing encoding. Among the characters not originally intended for
Unicode are rarely used Kanji or Chinese characters, many of which are part of personal and place names,
making them rarely used, but much more essential than envisioned in the original architecture of Unicode.[4]

The Microsoft TrueType specification version 1.0 from 1992 used the name Apple Unicode instead of Unicode
for the Platform ID in the naming table.

Architecture and terminology

Unicode defines a codespace of 1,114,112 code points in the range 0hex to 10FFFFhex.[5] Normally a Unicode
code point is referred to by writing "U+" followed by its hexadecimal number. For code points in the Basic
Multilingual Plane (BMP), four digits are used (e.g., U+0058 for the character LATIN CAPITAL LETTER X);

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

3 of 25 1/3/2017 10:14 AM



for code points outside the BMP, five or six digits are used, as required (e.g., U+E0001 for the character
LANGUAGE TAG and U+10FFFD for the character PRIVATE USE CHARACTER-10FFFD).[6]

Code point planes and blocks

The Unicode codespace is divided into seventeen planes, numbered 0 to 16:

All code points in the BMP are accessed as a single code unit in UTF-16 encoding and can be encoded in one,
two or three bytes in UTF-8. Code points in Planes 1 through 16 (supplementary planes) are accessed as
surrogate pairs in UTF-16 and encoded in four bytes in UTF-8.

Within each plane, characters are allocated within named blocks of related characters. Although blocks are an
arbitrary size, they are always a multiple of 16 code points and often a multiple of 128 code points. Characters
required for a given script may be spread out over several different blocks.

Character General Category

Each code point has a single General Category property. The major categories are: Letter, Mark, Number,
Punctuation, Symbol, Separator and Other. Within these categories, there are subdivisions. The General
Category is not useful for every use, since legacy encodings have used multiple characteristics per single code
point. E.g., U+000A <control-000A> Line feed (LF) in ASCII is both a control and a formatting separator; in
Unicode the General Category is "Other, Control". Often, other properties must be used to specify the
characteristics and behaviour of a code point. The possible General Categories are:

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

4 of 25 1/3/2017 10:14 AM



General Category (Unicode Character Property)[a]

Value
Category

Major, minor Basic type[b] Character

assigned[b] Fixed[c] Remarks

Letter

Lu
Letter,
uppercase

Graphic Character

Ll
Letter,
lowercase

Graphic Character

Lt
Letter,
titlecase

Graphic Character
Ligatures containing uppercase
followed by lowercase letters
(e.g., ǅ, ǈ, ǋ, and ǲ)

Lm
Letter,
modifier

Graphic Character

Lo Letter, other Graphic Character

Mark

Mn
Mark,
nonspacing

Graphic Character

Mc
Mark, spacing
combining

Graphic Character

Me
Mark,
enclosing

Graphic Character

Number

Nd
Number,
decimal digit

Graphic Character
All these, and only these, have

Numeric Type = De[c]

Nl Number, letter Graphic Character
Numerals composed of letters
or letterlike symbols (e.g.,
Roman numerals)

No Number, other Graphic Character
E.g., vulgar fractions,
superscript and subscript digits

Punctuation

Pc
Punctuation,
connector

Graphic Character Includes "_" underscore

Pd
Punctuation,
dash

Graphic Character
Includes several hyphen
characters

Ps
Punctuation,
open

Graphic Character Opening bracket characters

Pe
Punctuation,
close

Graphic Character Closing bracket characters

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

5 of 25 1/3/2017 10:14 AM



General Category (Unicode Character Property)[a]

Value
Category

Major, minor Basic type[b] Character

assigned[b] Fixed[c] Remarks

Pi
Punctuation,
initial quote

Graphic Character

Opening quotation mark. Does
not include the ASCII "neutral"
quotation mark. May behave
like Ps or Pe depending on
usage

Pf
Punctuation,
final quote

Graphic Character
Closing quotation mark. May
behave like Ps or Pe depending
on usage

Po
Punctuation,
other

Graphic Character

Symbol

Sm Symbol, math Graphic Character

Sc
Symbol,
currency

Graphic Character

Sk
Symbol,
modifier

Graphic Character

So Symbol, other Graphic Character

Separator

Zs
Separator,
space

Graphic Character
Includes the space, but not
TAB, CR, or LF, which are Cc

Zl Separator, line Format Character
Only U+2028 LINE SEPARATOR

(LSEP)

Zp
Separator,
paragraph

Format Character
Only U+2029 PARAGRAPH

SEPARATOR (PSEP)

Other

Cc Other, control Control Character Fixed 65 No name[d], <control>

Cf Other, format Format Character

Includes the soft hyphen,
control characters to support
bi-directional text, and language
tag characters

Cs
Other,
surrogate

Surrogate
Not (but
abstract)

Fixed 2,048 No name[d], <surrogate>

Co
Other, private
use

Private-use
Not (but
abstract)

Fixed 137,468 total:
6,400 in BMP,
131,068

No name[d], <private-use>

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

6 of 25 1/3/2017 10:14 AM



General Category (Unicode Character Property)[a]

Value
Category

Major, minor Basic type[b] Character

assigned[b] Fixed[c] Remarks

in Planes 15–16

Cn
Other, not
assigned

Noncharacter Not Fixed 66 No name[d], <noncharacter>

Reserved Not Not fixed No name[d], <reserved>

"Table 4-9: General Category" (PDF). The Unicode Standard. Unicode Consortium. July 2016.a. 
"Table 2-3: Types of code points" (PDF). The Unicode Standard. Unicode Consortium. July 2016.b. 
Unicode Character Encoding Stability Policies: Property Value Stability (http://www.unicode.org/policies
/stability_policy.html#Property_Value) Stability policy: Some gc groups will never change. gc=Nd corresponds
with Numeric Type=De (decimal).

c. 

"Table 4-13: Construction of Code Point Labels" (PDF). The Unicode Standard. Unicode Consortium. July 2016. A
Code Point Label may be used to identify a nameless code point. E.g. <control-hhhh>, <control-0088>. The Name
remains blank, which can prevent inadvertently replacing, in documentation, a Control Name with a true Control
code. Unicode also uses <not a character> for <noncharacter>.

d. 

Code points in the range U+D800–U+DBFF (1,024 code points) are known as high-surrogate code points, and
code points in the range U+DC00–U+DFFF (1,024 code points) are known as low-surrogate code points. A
high-surrogate code point (also known as a leading surrogate) followed by a low-surrogate code point (also
known as a trailing surrogate) together form a surrogate pair used in UTF-16 to represent 1,048,576 code
points outside BMP. High and low surrogate code points are not valid by themselves. Thus the range of code
points that are available for use as characters is U+0000–U+D7FF and U+E000–U+10FFFF (1,112,064 code
points). The value of these code points (i.e., excluding surrogates) is sometimes referred to as the character's
scalar value.

Certain noncharacter code points are guaranteed never to be used for encoding characters, although
applications may make use of these code points internally if they wish. There are sixty-six noncharacters:
U+FDD0–U+FDEF and any code point ending in the value FFFE or FFFF (i.e., U+FFFE, U+FFFF, U+1FFFE,
U+1FFFF, … U+10FFFE, U+10FFFF). The set of noncharacters is stable, and no new noncharacters will ever
be defined.[11]

Reserved code points are those code points which are available for use as encoded characters, but are not yet
defined as characters by Unicode.

Private-use code points are considered to be assigned characters, but they have no interpretation specified by
the Unicode standard[12] so any interchange of such characters requires an agreement between sender and
receiver on their interpretation. There are three private-use areas in the Unicode codespace:

Private Use Area: U+E000–U+F8FF (6,400 characters)
Supplementary Private Use Area-A: U+F0000–U+FFFFD (65,534 characters)
Supplementary Private Use Area-B: U+100000–U+10FFFD (65,534 characters).

Graphic characters are characters defined by Unicode to have a particular semantic, and either have a visible
glyph shape or represent a visible space. As of Unicode 9.0 there are 128,019 graphic characters.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

7 of 25 1/3/2017 10:14 AM



Format characters are characters that do not have a visible appearance, but may have an effect on the
appearance or behavior of neighboring characters. For example, U+200C ZERO-WIDTH NON-JOINER and
U+200D ZERO-WIDTH JOINER may be used to change the default shaping behavior of adjacent characters (e.g.,
to inhibit ligatures or request ligature formation). There are 153 format characters in Unicode 9.0.

Sixty-five code points (U+0000–U+001F and U+007F–U+009F) are reserved as control codes, and correspond
to the C0 and C1 control codes defined in ISO/IEC 6429. Of these U+0009 (Tab), U+000A (Line Feed), and
U+000D (Carriage Return) are widely used in Unicode-encoded texts.

Graphic characters, format characters, control code characters, and private use characters are known
collectively as assigned characters.

Abstract characters

The set of graphic and format characters defined by Unicode does not correspond directly to the repertoire of
abstract characters that is representable under Unicode. Unicode encodes characters by associating an abstract
character with a particular code point.[13] However, not all abstract characters are encoded as a single Unicode
character, and some abstract characters may be represented in Unicode by a sequence of two or more
characters. For example, a Latin small letter "i" with an ogonek, a dot above, and an acute accent, which is
required in Lithuanian, is represented by the character sequence U+012F, U+0307, U+0301. Unicode maintains
a list of uniquely named character sequences for abstract characters that are not directly encoded in
Unicode.[14]

All graphic, format, and private use characters have a unique and immutable name by which they may be
identified. This immutability has been guaranteed since Unicode version 2.0 by the Name Stability policy.[11]

In cases where the name is seriously defective and misleading, or has a serious typographical error, a formal
alias may be defined, and applications are encouraged to use the formal alias in place of the official character
name. For example, U+A015ꀕ YI SYLLABLE WU has the formal alias YI SYLLABLE ITERATION MARK, and
U+FE18 ︘ PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRAKCET (sic) has the formal

alias PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRACKET.[15]

Unicode Consortium

The Unicode Consortium is a nonprofit organization that coordinates Unicode's development. Full members
include most of the main computer software and hardware companies with any interest in text-processing
standards, including Adobe Systems, Apple, Google, IBM, Microsoft, Oracle Corporation, and Yahoo!.[16]

The Consortium has the ambitious goal of eventually replacing existing character encoding schemes with
Unicode and its standard Unicode Transformation Format (UTF) schemes, as many of the existing schemes are
limited in size and scope and are incompatible with multilingual environments.

Versions

Unicode is developed in conjunction with the International Organization for Standardization and shares the
character repertoire with ISO/IEC 10646: the Universal Character Set. Unicode and ISO/IEC 10646 function
equivalently as character encodings, but The Unicode Standard contains much more information for
implementers, covering—in depth—topics such as bitwise encoding, collation and rendering. The Unicode
Standard enumerates a multitude of character properties, including those needed for supporting bidirectional

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

8 of 25 1/3/2017 10:14 AM



text. The two standards do use slightly different terminology.

The Consortium first published The Unicode Standard (ISBN 0-321-18578-1) in 1991 and continues to
develop standards based on that original work. The latest version of the standard, Unicode 9.0, was released in
June 2016 and is available from the consortium's website. The last of the major versions (versions x.0) to be
published in book form was Unicode 5.0 (ISBN 0-321-48091-0), but since Unicode 6.0 the full text of the
standard is no longer being published in book form. In 2012, however, it was announced that only the core
specification for Unicode version 6.1 would be made available as a 692-page print-on-demand paperback.[17]

Unlike the previous major version printings of the Standard, the print-on-demand core specification does not
include any code charts or standard annexes, but the entire standard, including the core specification, will still
remain freely available on the Unicode website.

Thus far the following major and minor versions of the Unicode standard have been published. Update
versions, which do not include any changes to character repertoire, are signified by the third number (e.g.,
"version 4.0.1") and are omitted in the table below.[18]

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

9 of 25 1/3/2017 10:14 AM



Unicode versions

Version Date Book
Corresponding
ISO/IEC 10646

Edition
Scripts

Characters

Total[tablenote 1] Notable additions

1.0.0
October
1991

ISBN
0-201-56788-1
(Vol.1)

24 7,161

Initial repertoire covers
these scripts: Arabic,
Armenian, Bengali,
Bopomofo, Cyrillic,
Devanagari, Georgian,
Greek and Coptic,
Gujarati, Gurmukhi,
Hangul, Hebrew,
Hiragana, Kannada,
Katakana, Lao, Latin,
Malayalam, Oriya, Tamil,
Telugu, Thai, and

Tibetan.[19]

1.0.1 June 1992
ISBN
0-201-60845-6
(Vol.2)

25 28,359
The initial set of 20,902
CJK Unified Ideographs

is defined.[20]

1.1 June 1993
ISO/IEC
10646-1:1993

24 34,233

4,306 more Hangul
syllables added to original
set of 2,350 characters.

Tibetan removed.[21]

2.0 July 1996
ISBN
0-201-48345-9

ISO/IEC
10646-1:1993 plus
Amendments 5, 6
and 7

25 38,950

Original set of Hangul
syllables removed, and a
new set of 11,172 Hangul
syllables added at a new
location. Tibetan added
back in a new location
and with a different
character repertoire.
Surrogate character
mechanism defined, and
Plane 15 and Plane 16
Private Use Areas

allocated.[22]

2.1 May 1998

ISO/IEC
10646-1:1993 plus
Amendments 5, 6
and 7, as well as
two characters
from Amendment
18

25 38,952
Euro sign and Object
Replacement Character

added.[23]

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

10 of 25 1/3/2017 10:14 AM



3.0
September
1999

ISBN
0-201-61633-5

ISO/IEC
10646-1:2000

38 49,259

Cherokee, Ethiopic,
Khmer, Mongolian,
Burmese, Ogham, Runic,
Sinhala, Syriac, Thaana,
Unified Canadian
Aboriginal Syllabics, and
Yi Syllables added, as
well as a set of Braille

patterns.[24]

3.1
March
2001

ISO/IEC
10646-1:2000

ISO/IEC
10646-2:2001

41 94,205

Deseret, Gothic and Old
Italic added, as well as
sets of symbols for
Western music and
Byzantine music, and
42,711 additional CJK

Unified Ideographs.[25]

3.2
March
2002

ISO/IEC
10646-1:2000 plus
Amendment 1

ISO/IEC
10646-2:2001

45 95,221
Philippine scripts Buhid,
Hanunó'o, Tagalog, and

Tagbanwa added.[26]

4.0
April
2003

ISBN
0-321-18578-1

ISO/IEC
10646:2003

52 96,447

Cypriot syllabary, Limbu,
Linear B, Osmanya,
Shavian, Tai Le, and
Ugaritic added, as well as

Hexagram symbols.[27]

4.1
March
2005

ISO/IEC
10646:2003 plus
Amendment 1

59 97,720

Buginese, Glagolitic,
Kharoshthi, New Tai Lue,
Old Persian, Syloti Nagri,
and Tifinagh added, and
Coptic was disunified
from Greek. Ancient
Greek numbers and
musical symbols were

also added.[28]

5.0 July 2006
ISBN
0-321-48091-0

ISO/IEC
10646:2003 plus
Amendments 1
and 2, as well as
four characters
from Amendment
3

64 99,089
Balinese, Cuneiform,
N'Ko, Phags-pa, and

Phoenician added.[29]

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

11 of 25 1/3/2017 10:14 AM



5.1
April
2008

ISO/IEC
10646:2003 plus
Amendments 1, 2,
3 and 4

75 100,713

Carian, Cham, Kayah Li,
Lepcha, Lycian, Lydian,
Ol Chiki, Rejang,
Saurashtra, Sundanese,
and Vai added, as well as
sets of symbols for the
Phaistos Disc, Mahjong
tiles, and Domino tiles.
There were also important
additions for Burmese,
additions of letters and
Scribal abbreviations used
in medieval manuscripts,
and the addition of

Capital ẞ.[30]

5.2
October
2009

ISO/IEC
10646:2003 plus
Amendments 1, 2,
3, 4, 5 and 6

90 107,361

Avestan, Bamum,
Egyptian hieroglyphs (the
Gardiner Set, comprising
1,071 characters),
Imperial Aramaic,
Inscriptional Pahlavi,
Inscriptional Parthian,
Javanese, Kaithi, Lisu,
Meetei Mayek, Old South
Arabian, Old Turkic,
Samaritan, Tai Tham and
Tai Viet added. 4,149
additional CJK Unified
Ideographs (CJK-C), as
well as extended Jamo for
Old Hangul, and
characters for Vedic

Sanskrit.[31]

6.0
October
2010

ISO/IEC
10646:2010 plus
the Indian rupee
sign

93 109,449

Batak, Brahmi, Mandaic,
playing card symbols,
transport and map
symbols, alchemical
symbols, emoticons and
emoji. 222 additional CJK
Unified Ideographs

(CJK-D) added.[32]

6.1
January
2012

ISO/IEC
10646:2012

100 110,181

Chakma, Meroitic
cursive, Meroitic
hieroglyphs, Miao,
Sharada, Sora Sompeng,

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

12 of 25 1/3/2017 10:14 AM



and Takri.[33]

6.2
September
2012

ISO/IEC
10646:2012 plus
the Turkish lira
sign

100 110,182 Turkish lira sign.[34]

6.3
September
2013

ISO/IEC
10646:2012 plus
six characters

100 110,187
5 bidirectional formatting

characters.[35]

7.0 June 2014

ISO/IEC
10646:2012 plus
Amendments 1
and 2, as well as
the Ruble sign

123 113,021

Bassa Vah, Caucasian
Albanian, Duployan,
Elbasan, Grantha, Khojki,
Khudawadi, Linear A,
Mahajani, Manichaean,
Mende Kikakui, Modi,
Mro, Nabataean, Old
North Arabian, Old
Permic, Pahawh Hmong,
Palmyrene, Pau Cin Hau,
Psalter Pahlavi, Siddham,
Tirhuta, Warang Citi, and

Dingbats.[36]

8.0 June 2015

ISO/IEC
10646:2014 plus
Amendment 1, as
well as the Lari
sign, nine CJK
unified ideographs,
and 41 emoji

characters[37]

129 120,737

Ahom, Anatolian
hieroglyphs, Hatran,
Multani, Old Hungarian,
SignWriting, 5,771 CJK
unified ideographs, a set
of lowercase letters for
Cherokee, and five emoji

skin tone modifiers[38]

9.0 June 2016

ISO/IEC
10646:2014 plus
Amendments 1
and 2, as well as
Adlam, Newa,
Japanese TV
symbols, and 74
emoji and

symbols[39]

135 128,237

Adlam, Bhaiksuki,
Marchen, Newa, Osage,
Tangut, and 72

emoji[40][41]

The number of characters listed for each version of Unicode is the total number of graphic, format and control
characters (i.e., excluding private-use characters, noncharacters and surrogate code points).

1. 

Scripts covered

Unicode covers almost all scripts (writing systems) in current use today.[42]

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

13 of 25 1/3/2017 10:14 AM



Many modern applications can

render a substantial subset of the

many scripts in Unicode, as

demonstrated by this screenshot

from the OpenOffice.org

application.

A total of 135 scripts are included in the latest version of Unicode
(covering alphabets, abugidas and syllabaries), although there are still
scripts that are not yet encoded, particularly those mainly used in
historical, liturgical, and academic contexts. Further additions of
characters to the already encoded scripts, as well as symbols, in particular
for mathematics and music (in the form of notes and rhythmic symbols),
also occur.

The Unicode Roadmap Committee (Michael Everson, Rick McGowan,
and Ken Whistler) maintain the list of scripts that are candidates or
potential candidates for encoding and their tentative code block
assignments on the Unicode Roadmap (http://www.unicode.org
/roadmaps/) page of the Unicode Consortium Web site. For some scripts on the Roadmap, such as Jurchen and
Nü Shu, encoding proposals have been made and they are working their way through the approval process. For
others scripts, such as Mayan and Rongorongo, no proposal has yet been made, and they await agreement on
character repertoire and other details from the user communities involved.

Some modern invented scripts which have not yet been included in Unicode (e.g., Tengwar) or which do not
qualify for inclusion in Unicode due to lack of real-world use (e.g., Klingon) are listed in the ConScript
Unicode Registry, along with unofficial but widely used Private Use Area code assignments.

There is also a Medieval Unicode Font Initiative focused on special Latin medieval characters. Part of these
proposals have been already included into Unicode.

The Script Encoding Initiative (http://linguistics.berkeley.edu/sei/), a project run by Deborah Anderson at the
University of California, Berkeley was founded in 2002 with the goal of funding proposals for scripts not yet
encoded in the standard. The project has become a major source of proposed additions to the standard in recent
years.[43]

Several mechanisms have been specified for implementing Unicode. The choice depends on available storage
space, source code compatibility, and interoperability with other systems.

Unicode Transformation Format and Universal Coded Character Set

Unicode defines two mapping methods: the Unicode Transformation Format (UTF) encodings, and the
Universal Coded Character Set (UCS) encodings. An encoding maps (possibly a subset of) the range of
Unicode code points to sequences of values in some fixed-size range, termed code values. All UTF encodings
map all code points (except surrogates) to a unique sequence of bytes.[44] The numbers in the names of the
encodings indicate the number of bits per code value (for UTF encodings) or the number of bytes per code
value (for UCS encodings). UTF-8 and UTF-16 are probably the most commonly used encodings. UCS-2 is an
obsolete subset of UTF-16; UCS-4 and UTF-32 are functionally equivalent.

UTF encodings include:

UTF-1, a retired predecessor of UTF-8, maximizes compatibility with ISO 2022, no longer part of The
Unicode Standard;
UTF-7, a 7-bit encoding sometimes used in e-mail, often considered obsolete (not part of The Unicode

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

14 of 25 1/3/2017 10:14 AM



Standard, but only documented as an informational RFC, i.e., not on the Internet Standards Track either);
UTF-8, an 8-bit variable-width encoding which maximizes compatibility with ASCII;
UTF-EBCDIC, an 8-bit variable-width encoding similar to UTF-8, but designed for compatibility with
EBCDIC (not part of The Unicode Standard);
UTF-16, a 16-bit, variable-width encoding;
UTF-32, a 32-bit, fixed-width encoding.

UTF-8 uses one to four bytes per code point and, being compact for Latin scripts and ASCII-compatible,
provides the de facto standard encoding for interchange of Unicode text. It is used by FreeBSD and most recent
Linux distributions as a direct replacement for legacy encodings in general text handling.

The UCS-2 and UTF-16 encodings specify the Unicode Byte Order Mark (BOM) for use at the beginnings of
text files, which may be used for byte ordering detection (or byte endianness detection). The BOM, code point
U+FEFF has the important property of unambiguity on byte reorder, regardless of the Unicode encoding used;
U+FFFE (the result of byte-swapping U+FEFF) does not equate to a legal character, and U+FEFF in other
places, other than the beginning of text, conveys the zero-width non-break space (a character with no
appearance and no effect other than preventing the formation of ligatures).

The same character converted to UTF-8 becomes the byte sequence EF BB BF. The Unicode Standard allows

that the BOM "can serve as signature for UTF-8 encoded text where the character set is unmarked".[45] Some
software developers have adopted it for other encodings, including UTF-8, in an attempt to distinguish UTF-8
from local 8-bit code pages. However RFC 3629, the UTF-8 standard, recommends that byte order marks be
forbidden in protocols using UTF-8, but discusses the cases where this may not be possible. In addition, the
large restriction on possible patterns in UTF-8 (for instance there cannot be any lone bytes with the high bit
set) means that it should be possible to distinguish UTF-8 from other character encodings without relying on
the BOM.

In UTF-32 and UCS-4, one 32-bit code value serves as a fairly direct representation of any character's code
point (although the endianness, which varies across different platforms, affects how the code value manifests as
an octet sequence). In the other encodings, each code point may be represented by a variable number of code
values. UTF-32 is widely used as an internal representation of text in programs (as opposed to stored or
transmitted text), since every Unix operating system that uses the gcc compilers to generate software uses it as
the standard "wide character" encoding. Some programming languages, such as Seed7, use UTF-32 as internal
representation for strings and characters. Recent versions of the Python programming language (beginning with
2.2) may also be configured to use UTF-32 as the representation for Unicode strings, effectively disseminating
such encoding in high-level coded software.

Punycode, another encoding form, enables the encoding of Unicode strings into the limited character set
supported by the ASCII-based Domain Name System (DNS). The encoding is used as part of IDNA, which is a
system enabling the use of Internationalized Domain Names in all scripts that are supported by Unicode.
Earlier and now historical proposals include UTF-5 and UTF-6.

GB18030 is another encoding form for Unicode, from the Standardization Administration of China. It is the
official character set of the People's Republic of China (PRC). BOCU-1 and SCSU are Unicode compression
schemes. The April Fools' Day RFC of 2005 specified two parody UTF encodings, UTF-9 and UTF-18.

Ready-made versus composite characters

Unicode includes a mechanism for modifying character shape that greatly extends the supported glyph
repertoire. This covers the use of combining diacritical marks. They are inserted after the main character.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

15 of 25 1/3/2017 10:14 AM



Multiple combining diacritics may be stacked over the same character. Unicode also contains precomposed
versions of most letter/diacritic combinations in normal use. These make conversion to and from legacy
encodings simpler, and allow applications to use Unicode as an internal text format without having to
implement combining characters. For example, é can be represented in Unicode as U+0065 (LATIN SMALL
LETTER E) followed by U+0301 (COMBINING ACUTE ACCENT), but it can also be represented as the
precomposed character U+00E9 (LATIN SMALL LETTER E WITH ACUTE). Thus, in many cases, users
have multiple ways of encoding the same character. To deal with this, Unicode provides the mechanism of
canonical equivalence.

An example of this arises with Hangul, the Korean alphabet. Unicode provides a mechanism for composing
Hangul syllables with their individual subcomponents, known as Hangul Jamo. However, it also provides
11,172 combinations of precomposed syllables made from the most common jamo.

The CJK ideographs currently have codes only for their precomposed form. Still, most of those ideographs
comprise simpler elements (often called radicals in English), so in principle, Unicode could have decomposed
them, as it did with Hangul. This would have greatly reduced the number of required code points, while
allowing the display of virtually every conceivable ideograph (which might do away with some of the
problems caused by Han unification). A similar idea is used by some input methods, such as Cangjie and Wubi.
However, attempts to do this for character encoding have stumbled over the fact that ideographs do not
decompose as simply or as regularly as Hangul does.

A set of radicals was provided in Unicode 3.0 (CJK radicals between U+2E80 and U+2EFF, KangXi radicals
in U+2F00 to U+2FDF, and ideographic description characters from U+2FF0 to U+2FFB), but the Unicode
standard (ch. 12.2 of Unicode 5.2) warns against using ideographic description sequences as an alternate
representation for previously encoded characters:

This process is different from a formal encoding of an ideograph. There is no canonical description
of unencoded ideographs; there is no semantic assigned to described ideographs; there is no
equivalence defined for described ideographs. Conceptually, ideographic descriptions are more
akin to the English phrase "an 'e' with an acute accent on it" than to the character sequence
<U+0065, U+0301>.

Ligatures

Many scripts, including Arabic and Devanagari, have special orthographic rules that require certain
combinations of letterforms to be combined into special ligature forms. The rules governing ligature formation
can be quite complex, requiring special script-shaping technologies such as ACE (Arabic Calligraphic Engine
by DecoType in the 1980s and used to generate all the Arabic examples in the printed editions of the Unicode
Standard), which became the proof of concept for OpenType (by Adobe and Microsoft), Graphite (by SIL
International), or AAT (by Apple).

Instructions are also embedded in fonts to tell the operating system how to properly output different character
sequences. A simple solution to the placement of combining marks or diacritics is assigning the marks a width
of zero and placing the glyph itself to the left or right of the left sidebearing (depending on the direction of the
script they are intended to be used with). A mark handled this way will appear over whatever character
precedes it, but will not adjust its position relative to the width or height of the base glyph; it may be visually
awkward and it may overlap some glyphs. Real stacking is impossible, but can be approximated in limited
cases (for example, Thai top-combining vowels and tone marks can just be at different heights to start with).

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

16 of 25 1/3/2017 10:14 AM



Generally this approach is only effective in monospaced fonts, but may be used as a fallback rendering method
when more complex methods fail.

Standardized subsets

Several subsets of Unicode are standardized: Microsoft Windows since Windows NT 4.0 supports WGL-4 with
652 characters, which is considered to support all contemporary European languages using the Latin, Greek, or
Cyrillic script. Other standardized subsets of Unicode include the Multilingual European Subsets:[46]

MES-1 (Latin scripts only, 335 characters), MES-2 (Latin, Greek and Cyrillic 1062 characters)[47] and
MES-3A & MES-3B (two larger subsets, not shown here). Note that MES-2 includes every character in MES-1
and WGL-4.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

17 of 25 1/3/2017 10:14 AM



WGL-4, MES-1 and MES-2

Row Cells Range(s)

00
20–7E Basic Latin (00–7F)

A0–FF Latin-1 Supplement (80–FF)

01
00–13, 14–15, 16–2B, 2C–2D, 2E–4D, 4E–4F, 50–7E, 7F Latin Extended-A (00–7F)

8F, 92, B7, DE-EF, FA–FF Latin Extended-B (80–FF ...)

02

18–1B, 1E–1F Latin Extended-B (... 00–4F)

59, 7C, 92 IPA Extensions (50–AF)

BB–BD, C6, C7, C9, D6, D8–DB, DC, DD, DF, EE
Spacing Modifier Letters
(B0–FF)

03 74–75, 7A, 7E, 84–8A, 8C, 8E–A1, A3–CE, D7, DA–E1 Greek (70–FF)

04
00, 01–0C, 0D, 0E–4F, 50, 51–5C, 5D, 5E–5F, 90–91, 92–C4, C7–C8,
CB–CC, D0–EB, EE–F5, F8–F9

Cyrillic (00–FF)

1E 02–03, 0A–0B, 1E–1F, 40–41, 56–57, 60–61, 6A–6B, 80–85, 9B, F2–F3
Latin Extended Additional
(00–FF)

1F
00–15, 18–1D, 20–45, 48–4D, 50–57, 59, 5B, 5D, 5F–7D, 80–B4,
B6–C4, C6–D3, D6–DB, DD–EF, F2–F4, F6–FE

Greek Extended (00–FF)

20

13–14, 15, 17, 18–19, 1A–1B, 1C–1D, 1E, 20–22, 26, 30, 32–33, 39–3A,
3C, 3E

General Punctuation (00–6F)

44, 4A, 7F, 82
Superscripts and Subscripts
(70–9F)

A3–A4, A7, AC, AF Currency Symbols (A0–CF)

21

05, 13, 16, 22, 26, 2E Letterlike Symbols (00–4F)

5B–5E Number Forms (50–8F)

90–93, 94–95, A8 Arrows (90–FF)

22
00, 02, 03, 06, 08–09, 0F, 11–12, 15, 19–1A, 1E–1F, 27–28, 29, 2A, 2B,
48, 59, 60–61, 64–65, 82–83, 95, 97

Mathematical Operators
(00–FF)

23 02, 0A, 20–21, 29–2A
Miscellaneous Technical
(00–FF)

25

00, 02, 0C, 10, 14, 18, 1C, 24, 2C, 34, 3C, 50–6C Box Drawing (00–7F)

80, 84, 88, 8C, 90–93 Block Elements (80–9F)

A0–A1, AA–AC, B2, BA, BC, C4, CA–CB, CF, D8–D9, E6 Geometric Shapes (A0–FF)

26 3A–3C, 40, 42, 60, 63, 65–66, 6A, 6B
Miscellaneous Symbols
(00–FF)

F0 (01–02) Private Use Area (00–FF ...)

FB 01–02
Alphabetic Presentation
Forms (00–4F)

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

18 of 25 1/3/2017 10:14 AM



FF FD Specials

Rendering software which cannot process a Unicode character appropriately often displays it as an open
rectangle, or the Unicode "replacement character" (U+FFFD, �), to indicate the position of the unrecognized
character. Some systems have made attempts to provide more information about such characters. The Apple's
Last Resort font will display a substitute glyph indicating the Unicode range of the character, and the SIL
International's Unicode Fallback font will display a box showing the hexadecimal scalar value of the character.

Operating systems

Unicode has become the dominant scheme for internal processing and storage of text. Although a great deal of
text is still stored in legacy encodings, Unicode is used almost exclusively for building new information
processing systems. Early adopters tended to use UCS-2 (the fixed-width two-byte precursor to UTF-16) and
later moved to UTF-16 (the variable-width current standard), as this was the least disruptive way to add
support for non-BMP characters. The best known such system is Windows NT (and its descendants, Windows
2000, Windows XP, Windows Vista and Windows 7), which uses UTF-16 as the sole internal character
encoding. The Java and .NET bytecode environments, Mac OS X, and KDE also use it for internal
representation. Unicode is available on Windows 95 through Microsoft Layer for Unicode, as well as on its
descendants, Windows 98 and Windows ME.

UTF-8 (originally developed for Plan 9)[48] has become the main storage encoding on most Unix-like
operating systems (though others are also used by some libraries) because it is a relatively easy replacement for
traditional extended ASCII character sets. UTF-8 is also the most common Unicode encoding used in HTML
documents on the World Wide Web.

Multilingual text-rendering engines which use Unicode include Uniscribe and DirectWrite for Microsoft
Windows, ATSUI and Core Text for Mac OS X, and Pango for GTK+ and the GNOME desktop.

Input methods

Because keyboard layouts cannot have simple key combinations for all characters, several operating systems
provide alternative input methods that allow access to the entire repertoire.

ISO 14755,[49] which standardises methods for entering Unicode characters from their code points, specifies
several methods. There is the Basic method, where a beginning sequence is followed by the hexadecimal
representation of the code point and the ending sequence. There is also a screen-selection entry method
specified, where the characters are listed in a table in a screen, such as with a character map program.

Email

MIME defines two different mechanisms for encoding non-ASCII characters in email, depending on whether
the characters are in email headers (such as the "Subject:"), or in the text body of the message; in both cases,
the original character set is identified as well as a transfer encoding. For email transmission of Unicode the
UTF-8 character set and the Base64 or the Quoted-printable transfer encoding are recommended, depending on
whether much of the message consists of ASCII-characters. The details of the two different mechanisms are
specified in the MIME standards and generally are hidden from users of email software.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

19 of 25 1/3/2017 10:14 AM



The adoption of Unicode in email has been very slow. Some East-Asian text is still encoded in encodings such
as ISO-2022, and some devices, such as mobile phones, still cannot handle Unicode data correctly. Support has
been improving however. Many major players like XgenPlus from India and other free mail providers such as
Yahoo, Google (Gmail), and Microsoft (Outlook.com) support it.

Web

All W3C recommendations have used Unicode as their document character set since HTML 4.0. Web
browsers have supported Unicode, especially UTF-8, for many years. There used to be display problems
resulting primarily from font related issues; e.g. v 6 and older of Microsoft Internet Explorer did not render
many code points unless explicitly told to use a font that contains them.[50]

Although syntax rules may affect the order in which characters are allowed to appear, XML (including
XHTML) documents, by definition,[51] comprise characters from most of the Unicode code points, with the
exception of:

most of the C0 control codes
the permanently unassigned code points D800–DFFF
FFFE or FFFF

HTML characters manifest either directly as bytes according to document's encoding, if the encoding supports
them, or users may write them as numeric character references based on the character's Unicode code point.
For example, the references &#916;, &#1049;, &#1511;, &#1605;, &#3671;, &#12354;, &#21494;, &#33865;,
and &#47568; (or the same numeric values expressed in hexadecimal, with &#x as the prefix) should display on
all browsers as Δ, Й, ק ,م, ๗, あ, 叶, 葉, and 말.

When specifying URIs, for example as URLs in HTTP requests, non-ASCII characters must be percent-
encoded.

Fonts

Free and retail fonts based on Unicode are widely available, since TrueType and OpenType support Unicode.
These font formats map Unicode code points to glyphs.

Thousands of fonts exist on the market, but fewer than a dozen fonts—sometimes described as "pan-Unicode"
fonts—attempt to support the majority of Unicode's character repertoire. Instead, Unicode-based fonts typically
focus on supporting only basic ASCII and particular scripts or sets of characters or symbols. Several reasons
justify this approach: applications and documents rarely need to render characters from more than one or two
writing systems; fonts tend to demand resources in computing environments; and operating systems and
applications show increasing intelligence in regard to obtaining glyph information from separate font files as
needed, i.e., font substitution. Furthermore, designing a consistent set of rendering instructions for tens of
thousands of glyphs constitutes a monumental task; such a venture passes the point of diminishing returns for
most typefaces.

Newlines

Unicode partially addresses the newline problem that occurs when trying to read a text file on different
platforms. Unicode defines a large number of characters that conforming applications should recognize as line
terminators.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

20 of 25 1/3/2017 10:14 AM



In terms of the newline, Unicode introduced U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR.
This was an attempt to provide a Unicode solution to encoding paragraphs and lines semantically, potentially
replacing all of the various platform solutions. In doing so, Unicode does provide a way around the historical
platform dependent solutions. Nonetheless, few if any Unicode solutions have adopted these Unicode line and
paragraph separators as the sole canonical line ending characters. However, a common approach to solving this
issue is through newline normalization. This is achieved with the Cocoa text system in Mac OS X and also
with W3C XML and HTML recommendations. In this approach every possible newline character is converted
internally to a common newline (which one does not really matter since it is an internal operation just for
rendering). In other words, the text system can correctly treat the character as a newline, regardless of the
input's actual encoding.

Philosophical and completeness criticisms

Han unification (the identification of forms in the East Asian languages which one can treat as stylistic
variations of the same historical character) has become one of the most controversial aspects of Unicode,
despite the presence of a majority of experts from all three regions in the Ideographic Rapporteur Group (IRG),
which advises the Consortium and ISO on additions to the repertoire and on Han unification.[52]

Unicode has been criticized for failing to separately encode older and alternative forms of kanji which, critics
argue, complicates the processing of ancient Japanese and uncommon Japanese names. This is often due to the
fact that Unicode encodes characters rather than glyphs (the visual representations of the basic character that
often vary from one language to another). Unification of glyphs leads to the perception that the languages
themselves, not just the basic character representation, are being merged.[53] There have been several attempts
to create alternative encodings that preserve the stylistic differences between Chinese, Japanese, and Korean
characters in opposition to Unicode's policy of Han unification. An example of one is TRON (although it is not
widely adopted in Japan, there are some users who need to handle historical Japanese text and favor it).

Although the repertoire of fewer than 21,000 Han characters in the earliest version of Unicode was largely
limited to characters in common modern usage, Unicode now includes more than 70,000 Han characters, and
work is continuing to add thousands more historic and dialectal characters used in China, Japan, Korea,
Taiwan, and Vietnam.

Modern font technology provides a means to address the practical issue of needing to depict a unified Han
character in terms of a collection of alternative glyph representations, in the form of Unicode variation
sequences. For example, the Advanced Typographic tables of OpenType permit one of a number of alternative
glyph representations to be selected when performing the character to glyph mapping process. In this case,
information can be provided within plain text to designate which alternate character form to select.

If the difference in the appropriate glyphs for two characters in the same script differ only in the italic, Unicode
has generally unified them, as can be seen in the comparison between Russian (labeled standard) and Serbian
characters at right, meaning that the difference had shown through smart font technology or manually changing
fonts.

Mapping to legacy character sets

Unicode was designed to provide code-point-by-code-point round-trip format conversion to and from any
preexisting character encodings, so that text files in older character sets can be converted to Unicode and then

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

21 of 25 1/3/2017 10:14 AM



Various Cyrillic characters shown

with and without italics.

back and get back the same file, without employing context-dependent
interpretation. That has meant that inconsistent legacy architectures,
such as combining diacritics and precomposed characters, both exist in
Unicode, giving more than one method of representing some text. This
is most pronounced in the three different encoding forms for Korean
Hangul. Since version 3.0, any precomposed characters that can be
represented by a combining sequence of already existing characters can
no longer be added to the standard in order to preserve interoperability
between software using different versions of Unicode.

Injective mappings must be provided between characters in existing
legacy character sets and characters in Unicode to facilitate conversion
to Unicode and allow interoperability with legacy software. Lack of
consistency in various mappings between earlier Japanese encodings
such as Shift-JIS or EUC-JP and Unicode led to round-trip format
conversion mismatches, particularly the mapping of the character JIS X
0208 '～' (1-33, WAVE DASH), heavily used in legacy database data, to either U+FF5E～ FULLWIDTH TILDE

(in Microsoft Windows) or U+301C〜 WAVE DASH (other vendors).[54]

Some Japanese computer programmers objected to Unicode because it requires them to separate the use of
U+005C \ REVERSE SOLIDUS (backslash) and U+00A5 ¥ YEN SIGN, which was mapped to 0x5C in JIS X 0201,

and a lot of legacy code exists with this usage.[55] (This encoding also replaces tilde '~' 0x7E with macron '¯',
now 0xAF.) The separation of these characters exists in ISO 8859-1, from long before Unicode.

Indic scripts

Indic scripts such as Tamil and Devanagari are each allocated only 128 code points, matching the ISCII
standard. The correct rendering of Unicode Indic text requires transforming the stored logical order characters
into visual order and the forming of ligatures (aka conjuncts) out of components. Some local scholars argued in
favor of assignments of Unicode code points to these ligatures, going against the practice for other writing
systems, though Unicode contains some Arabic and other ligatures for backward compatibility purposes
only.[56][57][58] Encoding of any new ligatures in Unicode will not happen, in part because the set of ligatures is
font-dependent, and Unicode is an encoding independent of font variations. The same kind of issue arose for
the Tibetan script in 2003 when the Standardization Administration of China proposed encoding 956
precomposed Tibetan syllables,[59] but these were rejected for encoding by the relevant ISO committee
(ISO/IEC JTC 1/SC 2).[60]

Thai alphabet support has been criticized for its ordering of Thai characters. The vowels เ, แ, โ, ใ, ไ that are
written to the left of the preceding consonant are in visual order instead of phonetic order, unlike the Unicode
representations of other Indic scripts. This complication is due to Unicode inheriting the Thai Industrial
Standard 620, which worked in the same way, and was the way in which Thai had always been written on
keyboards. This ordering problem complicates the Unicode collation process slightly, requiring table lookups
to reorder Thai characters for collation.[53] Even if Unicode had adopted encoding according to spoken order, it
would still be problematic to collate words in dictionary order. E.g., the word แสดง [sa dɛːŋ] "perform" starts
with a consonant cluster "สด" (with an inherent vowel for the consonant "ส"), the vowel แ-, in spoken order
would come after the ด, but in a dictionary, the word is collated as it is written, with the vowel following the ส.

Combining characters

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

22 of 25 1/3/2017 10:14 AM



Characters with diacritical marks can generally be represented either as a single precomposed character or as a
decomposed sequence of a base letter plus one or more non-spacing marks. For example, ḗ (precomposed e
with macron and acute above) and ḗ (e followed by the combining macron above and combining acute above)
should be rendered identically, both appearing as an e with a macron and acute accent, but in practice, their
appearance may vary depending upon what rendering engine and fonts are being used to display the characters.
Similarly, underdots, as needed in the romanization of Indic, will often be placed incorrectly. Unicode
characters that map to precomposed glyphs can be used in many cases, thus avoiding the problem, but where
no precomposed character has been encoded the problem can often be solved by using a specialist Unicode
font such as Charis SIL that uses Graphite, OpenType, or AAT technologies for advanced rendering features.

Comparison of Unicode encodings
Cultural, political, and religious symbols in Unicode
International Components for Unicode (ICU), now as ICU-TC a part of Unicode
List of binary codes
List of Unicode characters
List of XML and HTML character entity references
Open-source Unicode typefaces
Standards related to Unicode
Unicode symbols
Universal Character Set
Lotus Multi-Byte Character Set (LMBCS), a parallel development with similar intentions

"The Unicode Standard: A Technical Introduction". Retrieved 2010-03-16.1. 
Becker, Joseph D. (1998-09-10) [1988-08-29]. "Unicode 88" (PDF). unicode.org (10th anniversary reprint ed.).
Unicode Consortium. Archived (PDF) from the original on 2016-11-25. Retrieved 2016-10-25. "In 1978, the initial
proposal for a set of "Universal Signs" was made by Bob Belleville at Xerox PARC. Many persons contributed ideas
to the development of a new encoding design. Beginning in 1980, these efforts evolved into the Xerox Character
Code Standard (XCCS) by the present author, a multilingual encoding which has been maintained by Xerox as an
internal corporate standard since 1982, through the efforts of Ed Smura, Ron Pellar, and others.
Unicode arose as the result of eight years of working experience with XCCS. Its fundamental differences from
XCCS were proposed by Peter Fenwick and Dave Opstad (pure 16-bit codes), and by Lee Collins (ideographic
character unification). Unicode retains the many features of XCCS whose utility have been proved over the years in
an international line of communication multilingual system products."

2. 

"Summary Narrative". Retrieved 2010-03-15.3. 
Searle, Stephen J. "Unicode Revisited". Retrieved 2013-01-18.4. 
"Glossary of Unicode Terms". Retrieved 2010-03-16.5. 
"Appendix A: Notational Conventions" (PDF). The Unicode Standard. Unicode Consortium. July 2016.6. 
"Unicode Character Encoding Stability Policy". Retrieved 2010-03-16.7. 
"Properties" (PDF). Retrieved 2010-03-16.8. 
"Unicode Character Encoding Model". Retrieved 2010-03-16.9. 
"Unicode Named Sequences". Retrieved 2010-03-16.10. 
"Unicode Name Aliases". Retrieved 2010-03-16.11. 
"The Unicode Consortium Members". Retrieved 2010-03-16.12. 
"Unicode 6.1 Paperback Available". announcements_at_unicode.org. Retrieved 2012-05-30.13. 
"Enumerated Versions of The Unicode Standard". Retrieved 2016-06-21.14. 
"Unicode Data 1.0.0". Retrieved 2010-03-16.15. 

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

23 of 25 1/3/2017 10:14 AM



"Unicode Data 1.0.1". Retrieved 2010-03-16.16. 
"Unicode Data 1995". Retrieved 2010-03-16.17. 
"Unicode Data-2.0.14". Retrieved 2010-03-16.18. 
"Unicode Data-2.1.2". Retrieved 2010-03-16.19. 
"Unicode Data-3.0.0". Retrieved 2010-03-16.20. 
"Unicode Data-3.1.0". Retrieved 2010-03-16.21. 
"Unicode Data-3.2.0". Retrieved 2010-03-16.22. 
"Unicode Data-4.0.0". Retrieved 2010-03-16.23. 
"Unicode Data". Retrieved 2010-03-16.24. 
"Unicode Data 5.0.0". Retrieved 2010-03-17.25. 
"Unicode Data 5.1.0". Retrieved 2010-03-17.26. 
"Unicode Data 5.2.0". Retrieved 2010-03-17.27. 
"Unicode Data 6.0.0". Retrieved 2010-10-11.28. 
"Unicode Data 6.1.0". Retrieved 2012-01-31.29. 
"Unicode Data 6.2.0". Retrieved 2012-09-26.30. 
"Unicode Data 6.3.0". Retrieved 2013-09-30.31. 
"Unicode Data 7.0.0". Retrieved 2014-06-15.32. 
"Unicode 8.0.0". Unicode Consortium. Retrieved 2015-06-17.33. 
"Unicode Data 8.0.0". Retrieved 2015-06-17.34. 
"Unicode 9.0.0". Unicode Consortium. Retrieved 2016-06-21.35. 
"Unicode Data 9.0.0". Retrieved 2016-06-21.36. 
Lobao, Martim (7 June 2016). "These Are The Two Emoji That Weren't Approved For Unicode 9 But Which Google
Added To Android Anyway". Android Police. Retrieved 4 September 2016.

37. 

"Character Code Charts". Retrieved 2010-03-17.38. 
"About The Script Encoding Initiative". The Unicode Consortium. Retrieved 2012-06-04.39. 
"UTF-8, UTF-16, UTF-32 & BOM". Unicode.org FAQ. Retrieved 12 December 2016.40. 
The Unicode Standard, Version 6.2. The Unicode Consortium. 2013. p. 561. ISBN 978-1-936213-08-5.41. 
CWA 13873:2000 – Multilingual European Subsets in ISO/IEC 10646-1 (http://www.evertype.com/standards
/iso10646/pdf/cwa13873.pdf) CEN Workshop Agreement 13873

42. 

Multilingual European Character Set 2 (MES-2) Rationale (http://www.cl.cam.ac.uk/~mgk25/ucs/mes-
2-rationale.html), Markus Kuhn, 1998

43. 

Pike, Rob (2003-04-30). "UTF-8 history".44. 
"ISO/IEC JTC1/SC 18/WG 9 N" (PDF). Retrieved 2012-06-04.45. 
Wood, Alan. "Setting up Windows Internet Explorer 5, 5.5 and 6 for Multilingual and Unicode Support". Alan
Wood. Retrieved 2012-06-04.

46. 

"Extensible Markup Language (XML) 1.1 (Second Edition)". Retrieved 2013-11-01.47. 
A Brief History of Character Codes (http://tronweb.super-nova.co.jp/characcodehist.html), Steven J. Searle,
originally written 1999 (http://web.archive.org/web/20001216022100/http://tronweb.super-nova.co.jp
/characcodehist.html), last updated 2004

48. 

The secret life of Unicode: A peek at Unicode's soft underbelly (http://web.archive.org/web/20130625062705/http:
//www.ibm.com/developerworks/library/u-secret.html), Suzanne Topping, 1 May 2001 (Internet Archive)

49. 

AFII contribution about WAVE DASH (http://std.dkuug.dk/jtc1/sc2/wg2/docs/n2166.doc), Unicode vendor-specific
character table for Japanese (http://www.ingrid.org/java/i18n/unicode.html)

50. 

ISO 646-* Problem (http://www.debian.org/doc/manuals/intro-i18n/ch-codes.en.html#s-646problem), Section
4.4.3.5 of Introduction to I18n, Tomohiro KUBOTA, 2001

51. 

"Arabic Presentation Forms-A" (PDF). Retrieved 2010-03-20.52. 
"Arabic Presentation Forms-B" (PDF). Retrieved 2010-03-20.53. 
"Alphabetic Presentation Forms" (PDF). Retrieved 2010-03-20.54. 
China (2 December 2002). "Proposal on Tibetan BrdaRten Characters Encoding for ISO/IEC 10646 in BMP" (PDF).55. 
V. S. Umamaheswaran (7 November 2003). "Resolutions of WG 2 meeting 44" (PDF). Resolution M44.20.56. 

The Unicode Standard, Version 3.0, The Unicode Consortium, Addison-Wesley Longman, Inc., April 2000. ISBN

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

24 of 25 1/3/2017 10:14 AM



0-201-61633-5
The Unicode Standard, Version 4.0, The Unicode Consortium, Addison-Wesley Professional, 27 August 2003. ISBN
0-321-18578-1
The Unicode Standard, Version 5.0, Fifth Edition, The Unicode Consortium, Addison-Wesley Professional, 27
October 2006. ISBN 0-321-48091-0
Julie D. Allen. The Unicode Standard, Version 6.0, The Unicode Consortium, Mountain View, 2011, ISBN
9781936213016, ([1] (http://www.unicode.org/versions/Unicode6.0.0/)).
The Complete Manual of Typography, James Felici, Adobe Press; 1st edition, 2002. ISBN 0-321-12730-7
Unicode: A Primer, Tony Graham, M&T books, 2000. ISBN 0-7645-4625-2.
Unicode Demystified: A Practical Programmer's Guide to the Encoding Standard, Richard Gillam, Addison-Wesley
Professional; 1st edition, 2002. ISBN 0-201-70052-2
Unicode Explained, Jukka K. Korpela, O'Reilly; 1st edition, 2006. ISBN 0-596-10121-X

The Unicode Consortium (http://www.unicode.org/)
Unicode (https://www.dmoz.org/Computers/Software/Globalization/Character_Encoding/Unicode/) at
DMOZ
Alan Wood's Unicode Resources (http://www.alanwood.net/unicode/) Contains lists of word processors
with Unicode capability; fonts and characters are grouped by type; characters are presented in lists, not
grids

Retrieved from "https://en.wikipedia.org/w/index.php?title=Unicode&oldid=757981131"

Categories: Unicode Character encoding Digital typography

This page was last modified on 2 January 2017, at 20:46.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Unicode - Wikipedia https://en.wikipedia.org/wiki/Unicode

25 of 25 1/3/2017 10:14 AM


